White Paper: Developing a Dynamic Performance Information
Infrastructure for Grid Systems

Rich Wolski* Martin Swany'
University of Tennessee University of Tennessee

Steven Fitzgerald?
University of Southern California
California State University, Northridge

February 9, 2000

Abstract This document specifies a potential architecture for managing dynamic performance infor-
mation in Computational Grid settings. The architecture’s components and relationships are motivated by
our recent experiences in building dynamic performance information infrastructures for a variety of Grid
systems.

1 Introduction

Computational Grids require timely and accurate dynamic performance information for two reasons. First,
dynamic application and resource schedulers must base their decisions on what available performance will be
available. Predicting available performance from static estimates does not allow schedulers to consider the
dynamically changing performance conditions. Secondly, dynamic performance information is necessary to
implement fault recognition and diagnosis. Often, component failures are soft (particularly in the network
where alternative routing may partially mask a problem) so faults manifest themselves as reductions in
delivered performance.

The purpose of this document is to outline an architecture for the management and control of dynamic
performance information in Computational Grid settings. Several characteristics distinguish the problem of
managing dynamic performance information from the provision of other Grid services.

¢ Performance information has a fixed, often short lifetime of utility. Data may go stale quickly
making rapid read access important, but obviating the need for long-term storage (except for archival
purposes).

e Updates are frequent. Unlike the more static forms of “metadata,” dynamic performance informa-
tion is typically updated more frequently then it is read. Most extant information-base technologies
are optimized for query and not update making them potentially unsuitable for a dynamic information
storage.

¢ Performance information is often stochastic. It is frequently impossible to characterize the per-
formance of a resource or application component using a single value. Therefore, dynamic performance
information may carry quality-of-information metrics quantifying its accuracy, distribution, lifetime,
etc. which may need to be calculated from the raw data. These calculations add a computational
component to the information management system itself.

*rich@cs.utk.edu
fswany@cs.utk.edu
fsteve@ecs.csun.edu

¢ The data gathering and delivery mechanisms must be high-performance. Because dynamic
data may grow stale quickly, the data management system must optimize the elapsed time associated
with storage and retrieval. Note that this requirement differentiates the problem of dynamic data
management from the problem of providing an archival performance record. The elapsed time to read
an archive, while important, is often not the driving design characteristic for the archival system. We
believe that archival data will be useful both for accounting purposes and for long-term trend analysis.
It is our belief, however, the separate but complimentary systems for managing and archiving Grid
performance data respectively are required, each tailored to meet its own set of unique performance
constraints.

¢ Grid performance measurement facilities must be scalable. With the potential for thousands of
resources and tens-of-thousands of Grid users to be using the Grid simultaneously, it will be important
for monitoring facilities to be able to limit their intrusiveness to an acceptable fraction of the available
resources. If no mechanism for managing performance monitors is provided, performance measurements
may simply measure the load introduced by other performance monitors.

It is important to realize that the requirements for dynamic performance information are different than
that for archival or static data. Our contention is that separate logical architectures for each type of data are
required. These architectures must be able to interoperate, but need not share implementations. We focus
on an architecture for gathering and managing dynamic data exclusively in this paper. Also, we hasten to
emphasize that this document outlines our observations about the abstractions that have proved relevant to
date. We intend it to serve as an invitation for discussion and a catalyst further investigation. Our goal is
to understand more fully the requirements for managing dynamic data on the Grid, but not to attempt to
mandate a particular implementation strategy.

2 Architecture

The architecture we propose consists of
e a directory service for naming and locating performance data and data sensors,

e 3 scalable and distributed performance monitoring service that gathers and stores dynamic per-
formance information,

e 3 short-term data repository service that can store data while it is not stale, and

e an information caching facility that allows a user or scheduler to specify a subset of the total infor-
mation base that is of interest.

According to the tenets of our model, dynamic performance data is gathered by sensors. A sensor is any
entity that is capable of producing time-stamped performance measurements. We place no restrictions on
the data format or units associated with either the time-stamps or the measurements produced by a sensor
and assume only that this information is available and can be published in a Grid-accessible information
base. Note that this definition is intended to include both resource and application performance sensors as
we believe that the management of both information types is critical to Grid performance.

2.1 Directory Service

To locate, name, and describe the structural characteristics of any dynamic data available to the Grid, we
believe that a distributed directory service for publishing this information must be available. The primary
purpose of this directory service is to allow information consumers (users, programs and resource schedulers,
visualization tools) to discover and understand the characteristics of the information that is available. That
is, the directory service facilitates information discovery within the system.

The directory service, however, is not responsible for the storage of performance data itself — only its name
and other characteristics. We assume the names and characteristics associated with dynamic performance

/[Data

LS \Repositor N
[ssr\, CEEAYH Caohe

N\ -M
/ \
\

[T) N\
for sy /\ \ /

\ Topology / —\“\

\ \

\ Dzemon Cache \\

A \
S \Repcsitory)]
fsmer, 8y Directory
Sanvice

N/

Figure 1: Architecture Overview

data will be slowly changing (unlike the data itself). That is, the name and structural characteristics of a
data set will remain relatively constant while the valid contents of the data set may change dramatically
over time. As such, query-optimized directory services such as the Globus MDS [2], LDAP, the Legion
Information Base, Novel NDS, the SDSC Metadata Catalog, etc. provide the necessary base functionality.
Similarly, performance sensors (their location, type, etc.) should be registered with the directory service
as, themselves, are Grid resources. Again, unlike the data they gather, we believe that sensor characteristics
will be slowly changing making query-optimized directory services appropriate implementation mechanisms.

2.2 Scalable Performance Monitoring

If performance monitors are not coordinated in the Grid, the intrusiveness of performance monitoring may
strongly impact available performance, particularly as the system scales. That is, if all performance facilities
operate their own sensors, Grid resources will be consumed by the monitoring facilities alone. Coordinating
a Grid-wide collection of sensors is complicated by both the scale of the problem (there are many Grid
resource characteristics to monitor) and by the dynamically changing performance and availability of Grid
resources. We propose that a Grid-wide sensor control facility be developed that

e scales with the Grid,
e allows sensors to join and to leave the system dynamically,
¢ is able to deliver performance information while it is still valid.

Note that scalability can be provided through a hierarchical structure and some notion of performance
equivalence. For example, end-to-end network monitoring is critical to effective Grid scheduling. It is not
feasible to probe all N2 links between the N Grid resources as the number of resources is likely to be large.
Notice, though, that as resources are separated by greater numbers of shared network gateways, a dominating
“bottleneck” gateway is likely to emerge as the performance limiting factor. That is, all hosts at one site
(say SDSC) are likely to see the same network performance when communicating with any host at another
site (say NCSA) located at a great distance. Only one probe between sites is necessary to characterize the
network performance between any pair of hosts located one at each site. This ability to cluster distant
resources so that they are represented by a single performance sensor (e.g. as relatively equivalent) naturally
lends itself to hierarchy. Hosts at each site probe each other and one “distinguished” host at each site is
designated to probe the intersite link.

We have used these techniques successfully to build a scalable end-to-end network performance monitoring
facility as part of the NWS which is robust with respect to sensor configuration and high-performance.

2.3 Data Repositories

To address the unique characteristics of performance data, we believe that specialized storage services must
be provided. The implementation of the components of such storage services must be designed around the
use and characteristics of the performance data. This data is generated from a number of locations and data
elements can be generated frequently. It is our belief that separate but complimentary systems for managing
and archiving Grid performance data respectively are required — each tailored to meet its own set of unique
performance constraints.

Because the data is potentially short-lived, we observe that sensor data can be stored in a distributed set
of repositories that are optimized for update and can time-out old data. We believe that sensor data will be
written more frequently and in smaller batches than it will be read. Sensors wish to append new measure-
ments to a valid history of existing measurements piecemeal. If old data is timed-out by the repositories,
the storage footprint and the update time can be carefully controlled using most existing file systems.

Consequently, a set of distributed repositories that are optimized for update, but do not necessarily
support files of nearly indefinite length, is required. For example, practical experience has shown that using
a LDAP directory server, which is optimized for read operations, is impractical for data storage. The use of
the LDAP protocol, however, makes this data available to a wide variety of LDAP-speaking entities. That
is, we want to be able to name and “view” the data as if it has been stored in an LDAP database without
burdening the LDAP storage mechanisms with the actual data. As part of our work with the MDS, we have
been exploring the use of referral mechanisms that allow the directory service to “call out” to other data
management services when a fetch for data is requested. We believe that this decoupling of naming and data
storage facilities is critical to the performance of the overall system.

Controlling the “footprint” associated with each repository is important for the same reason that perfor-
mance sensors should be coordinated — to limit intrusiveness. Since the frequency of data store operations
may be high, the data repositories must carefully control the storage resources they consume.

2.4 Data Caches

Often, a data consumer (be it a user or other Grid service) need only access a subset of the total dynamic
information base that is available. The naming service, which is optimized for query, may be able to support
global searches, but our experience is that data consumers often wish to focus on a data subset based on
such searches. We propose that some form of client-specific buffering or caching be interposable between
data producers and data consumers.

For example, a data visualization tool may wish to specify a subset of resources to visualize in response
to user input. Rather than fetching the data directly from the data repositories (which may be distant from
the visualization site) a cached copy may be located near the site where the data is being rendered. The
buffer is kept “hot” with the latest performance data for the relevant resources by the caching system. When
a rendering is demanded, the copy near the renderer is provided, thereby improving performance. Obviously,
the consistency of the copy and the repository are an issue but for many applications, best-effort consistency
is sufficient.

Currently, we are using an implementation of the Internet Backplane Protocol [3] (IBP) to implement
this caching facility in several of our AppLeS [4, 1] efforts.

Similarly, the data repositories, themselves, may wish to use caching to increase efficiency and decease
intrusiveness. As part of our experience with the Network Weather Service (NWS) [5], we find that the
overhead associated with writing each individual entry into a file (although it is a circular one) can be quite
substantial. Caching the data writes will increase the chance of lost data due to system failure, but will also
decease the storage overhead.

3 Issues and Concerns

While we believe that the problem of managing dynamic data on the Grid mandates the design of a separate
service architecture, there are several issues that we are deliberately skirting. In particular, we are trying

to be somewhat parsimonious and narrow with respect to the scope of this architecture. For example,
while it is possible to combine the functionality required to manage archival data dynamic data within one
implementation, we believe that architecturally, these are separate functionalities with separate requirements.
It must be possible to archive dynamic data, but we envision the archiving to be handled by a separate system
(with its own architecture) through a well-defined public interface.

Less clear is the distinction between dynamic performance data and distributed event handling. It
is possible to consider simple “events” as having the same characteristics as dynamic performance data.
Events, typically, must be processed within a specified time deadline just as the utility of performance
data (in dynamically changing Grid systems) has a fixed lifetime. Event information must be propagated
according to some consistency model just as some form of data consistency must be ensured for performance
data. That is, it is possible to treat each event as an individual performance datum that can be managed
by a system tuned for dynamic data management. A key difference, however, between performance data
and program events is that an event may, itself, trigger other events while our model performance data
is relatively passive. That is, we have not included in our architecture facilities for processing dynamic
performance data — only the facilities we believe are necessary to collect and distribute it efficiently. We
leave as an open question, hoping to stimulate discussion, the question of whether dynamic performance
data and dynamically generated program events should be managed in the same way on the Grid.

Finally, we are not advocating any particular interface, or set of interfaces for accessing performance
data on the Grid. It is possible to envision a single interface that permits access to dynamic, lifetime-limited
performance data, archival data, and static “metadata.” We believe that it is also possible to formulate
arguments (based on performance concerns) for separate interfaces. Our hope is that these issues and others
will be addressed as the Grid becomes more pervasive.

4 Conclusion

We believe that the requirements for dynamic performance data management on the Grid are sufficiently
unique to warrant a coherent architecture for meeting them. In this document, we articulate our current
observations of what those requirements are and a logical architecture that has emerged from our work for
satisfying them. We do not contend that this architecture is either minimalist or unique. Rather, we present
our rationale for its components as a way of stimulating discussion and further investigation.

References

[1] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application level scheduling on distributed heteroge-
neous networks. In Proceedings of Supercomputing 1996, 1996.

[2] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke. A directory service for con-
figuring high-performance distributed computations. In Proc. 6th IEEE Symp. on High Performance Distributed
Computing, August 1997.

[3] J. Plank, M. Beck, and W. Elwasif. IBP: The internet backplane protocol. Technical Report UT-CS-99-426,
University of Tennessee, 1999.

[4] N. Spring and R. Wolski. Application level scheduling: Gene sequence library comparison. In Proceedings of
ACM International Conference on Supercomputing 1998, July 1998.

[5] R. Wolski, N. Spring, and J. Hayes. The network weather service: A distributed resource perfor-
mance forecasting service for metacomputing. Future Generation Computer Systems, 1999. available from
http://www.cs.utk.edu/ rich/publications/nws-arch.ps.gz.

